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Fluctuation-dissipation dispersion relation and quality factor for slow processes

V. V. Belyi*
IZMIRAN, Troitsk, Moscow region 142190, Russia

~Received 9 May 2003; published 28 January 2004!

A generalization of the Callen-Welton formula for systems with slowly varying parameters is given. Using
the momentum method and the time multiscale technique, it is shown that not only the dissipation but also the
dispersive contributions determine the spectral function of the fluctuations in these systems. The general
formalism is illustrated for an oscillating electrical circuit, and the influence of the dispersion contributions on
the quality factor of the system is discussed.
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Any oscillating system is characterized by two main p
rameters: the proper frequency and the quality factor~Q fac-
tor!. The latter is directly linked with the sensitivity of th
system. The higher the Q factor, the more sensitive the
tem is. The Q factor is inversely proportional to the width
the spectral line of the parameter fluctuations. In thermo
namic equilibrium, the fluctuations are determined by
system temperatureQ and the dissipation. The firs
fluctuation-dissipation relation between the diffusion coe
cient and the dissipative friction coefficient was derived
dependently by Einstein and Smoluchowski in their theory
Brownian motion@1,2#. Later, this relation was establishe
by Nyquist @3# for electric circuits and was experimental
confirmed by Johnson@4#. The Nyquist-Johnson relation wa
extended by Callen and Welton@5# to a general class o
dissipative thermodynamic equilibrium systems~see also
Ref. @6#!. In the classical case the spectral function of t
fluctuations has the following form:

~x2!v5
2Q

v
Im a~v!, ~1!

wherea~v! is the response function, andQ is the tempera-
ture in energy units. The linear response theory and
fluctuation-dissipation theorem~FDT! for arbitrary dynamic
systems was developed by Kubo@7#, Mori @8#, and Zwanzig
@9#. In the Kubo method the response of the density matrix
the external field is calculated, whereas the Mori-Zwan
technique introduces a projection operator to the spac
variables that describe the macroscopic states of the sys
This technique was further developed by Lee@10# with the
assumption that the space of variables, describing ma
scopic states of the system is formed not only by the se
dynamic operators but also by their time derivatives to a
order. The slow processes and long time correlations in c
nection with ergodicity, anomalous diffusion, and Fick’s la
has been studied in Ref.@11#. The most comprehensive re
view of the state of the art concerning dynamical correlat
has been presented in a recent publication by Balucani,
and Tognetti@12#.

Klimontovich showed@13# that the standard FDT leads t
several difficulties if applied to concrete systems. Klimo
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tovich stated that the FDT always has system-specific for
Indeed, in general case, the system parameters may de
both on time and space. Inhomogeneities in space and
on scales greater than the fluctuation scales will certa
also contribute to fluctuations. Recently, in the context
plasma physics, and using the Langevin approach and
time-space multiscale technique, it has been shown that
amplitude and the width of the spectral lines of the elect
static field fluctuations and the electron form factor are
termined not only by the imaginary part of the dielectr
susceptibility but also by the derivatives of its real part@14#.
As a result of the inhomogeneity, these properties beco
asymmetric with respect to the inversion of the sign of t
frequency. In the kinetic regime, the form factor is mo
sensitive to space gradients than the spectral function of
electrostatic field fluctuations. This asymmetry of lines c
be used as a diagnostic tool to measure local gradients in
plasma.

In this Brief Report we generalize the fluctuatio
dissipation theorem for slowly varying processes. Using
momentum method and the time multiscale technique, a g
eralized Callen-Welton formula is derived. The width and t
amplitude of the spectral lines of the fluctuations are de
mined not only by the dissipation but also by the derivativ
of the dispersion. These two effects have a comparable
fluence for systems with a high Q factor. The non-Joule d
persion contribution is characterized by a new non-local
fect originating from an additional phase shift between
force and the response of the system. This phase shift re
from the parametric control to the system. As an applicat
we consider aLC circuit. It is shown that the spectral func
tion of the current depends not only on the real part of
impedance~dissipation! but also on the derivatives of it
imaginary part~dispersion!. It is also shown that at finite
time intervals one can drastically increase the Q factor
simultaneous increasing the inductance and decreasing
capacity.

Let us consider an arbitrary system whose evolution
described by the following equation:

S ]

]t
1L= ~ t ! D •G= ~ t,t8!50, t.t8, ~2!

whereL= (t) is generally a non-self-conjugate, linear oper
tor in the Hilbert space. This operator varies slowly in tim
The term ‘‘slowly’’ means that the control parameter unde
goes only a small change during the period of the sys

-
-
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motion. G= (t,t8) may be the Heisenberg operator. Th
L= (t)•G= (t,t8) will be the commutator with the Hamiltonian
In other casesG= (t,t8) could be a density matrix, an
L= (t) would appear as the Liouville operator. Finally, f
G= (t,t8) we can take the two-time correlatorG= (t,t8)
5^d f nm(t)d f n1m1

* (t8)& of the deviation from the referen

statef n(t) of the density matrix in the energy representati
d f nm(t) @15,16#. In such a caseL= (t) takes into account the
self-consistent field and collisions. The time dependence
L= (t) manifests itself in the referent state and in the ter
containing the external force. The slow scale is much lar
than the characteristic fluctuation time. We can therefore
troduce a small parameterm, which allows us to describe
fluctuations on the basis of a multiple time scale analy
Obviously, fluctuations vary on both ‘‘fast’’ and ‘‘slow’’ time
scales. The solution of the linear equation~2! can be ex-
pressed through Green’s function or the propagatorU= (t,t8)
of Eq. ~2! as

G= ~ t,t8!5U= ~ t,t8!•G= ~0!, ~3!

where in the case of the kinetic fluctuations, the one-ti
momentG= (0) is given by

G= ~0!5^d f nm~ t8!d f n1m1
* ~ t8!&

5dnn1
dmm1

f n~mt8!1 f m~mt8!

2
. ~4!

If the operatorL= does not depend on time, the dependen
on time of Green’s function appears only through the inter
t2t8. However, when we consider an operatorL= (mt) slowly
varying in time, and when we take nonlocal effects into a
count, the time dependence ofU= (t,t8) is more subtle
@14,17#.

U= ~ t,t8!5U= ~ t2t8,mt8!. ~5!

Here we want to stress that the nonlocal effects app
due to the slow time dependencesmt8. At first order, the
expansion of Eq.~5! with respect tom leads to

U= ~ t,t8!5S 12mt
]

]mt DU= ~t,mt !, t5t2t8. ~6!

Let us introduce the resolvent operator R=̌ (z) which can be
defined formally as the Laplace transform of the propaga
U= (t):

R=̌ ~z!5E
0

`

U= ~t!exp~ izt!dt, z5v1 i0 ~7!

The Laplace transform of Eqs.~3! and ~6! gives

G= 1~z!5S 11 i
]2

]t]v DR=̌ ~z!•G= ~0!. ~8!

For sake of convenience we omitm from that equation and
throughout this Brief Report, keeping in mind that the tim
derivatives are taken with respect to the slowly varying va
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ables. Thus in first approximation the expression for
spectral function of the fluctuations is

G= ~v!52ReS 11 i
]2

]t]v DR=̌ ~z!•G= ~0!. ~9!

The spectral density of the fluctuations of the internal p
rameters of the system in local equilibrium can be defined
usual@16,18#.

~dAdB!v5A= •G= ~v!•B=

5\F ImaAB~v!1
]2

]t]v
ReaAB~v!Gcoth~\v/2Q!,

~10!

where

aAB~v!5 i\(
nm

Řnmnm~z!AmnBnm~ f m2 f n) ~11!

is the response function for diagonal resolvent@16#.
In the classical limit\→0 the generalized Callen-Welto

formula ~10! takes the form

~dAdB!v5F ImaAB~v!1
]2

]t]v
ReaAB~v!G 2Q

v
. ~12!

In deriving Eqs.~10! and ~12! we assumed the system t
be in a local equilibrium state, so that the characteristic ti
for the variation of parameters exceeds the relaxation tim
the distribution function. When expanding Green’s functi
in Eq. ~6! in terms of the small parameterm, there appears an
additional term at first order. It is important to note that t
imaginary part of the response function is now replaced
the real part. If the Q factor of the system is of the order
1 ~it could be a broad-band system or a process near the
frequency!, the real and imaginary parts of the respon
function are of the same order and the correction is negl
bly small. But in the case of systems with a high Q factor,
which the real part of the response function is greater t
the imaginary part, the second small parameter appears t
inversely proportional to the Q factor. An example of su
system with a high Q factor could be plasma fluctuatio
near the Langmuir frequency when the Q factor is invers
proportional to the small plasma parameter@14#. When this
small parameter is comparable withm, the second term in
Eqs.~10! and~12! may have an effect comparable to the fir
term. This will be shown in the following example. At th
second order in the expansion inm, the corrections appea
only in the imaginary part of the response function, and th
can reasonably be neglected. It is therefore sufficient to
tain the first order corrections to solve the problem. T
same derivatives of the dispersion, as in Eqs.~10! and ~12!,
appear in the geometrical optics approximation@19# and play
an important role in defining the adiabatic invariant in a d
persive medium@20#.

As an example we consider the electrical oscillation c
cuit which can be used to model many oscillation proces
in nature. We assume that all the circuit elements~resistance
R, inductanceL, and capacityC) have the same temperatu
Q, which can change adiabatically. Therefore the system
4-2
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rametersR, L, andC will vary slowly in time. Moreover the
change of these parameters may also be mechanical, d
the action of external forces, by ‘‘hand.’’ It is this case th
we will consider when evaluating the Q factor of anLC
circuit.

The thermal motion of the charged particles in the circ
give rise to electric oscillations which can be considered
be equivalent to Brownian motion. The correspondi
Langevin equation is

dq

dt
5J, L~mt !

dJ

dt
1R~mt !J1

q

C~mt !
5Ě, ~13!

whereq is the electric charge,J is the current, andĚ is the
Langevin source. It can be treated as the emf equivalen
the action of the thermal motion of the charged particles
the circuit. Coming back to the momentum method, we c
represent the two-time correlator of the electric curr
GJ(t,t8) as GJ(t,t8)5U(t,t8)GJ(0), where U(t,t8) is the
propagator of the set of Eqs.~13!, and where the initial con-
dition GJ(0) for the local equilibrium state is

GJ~0!5
~L/C!1/2

2pQ E J2expS 2
LJ21q2/C

2Q DdqdJ5
Q~mt8!

L~mt8!
.

~14!

Applying the procedure above, we obtain the following e
pression for the spectral function of the current in the circ

~J2!v52 ReS 11 i
d2

dtdv D Ř~z!
Q

L

5

2FReZ~v!1
d2

dtdv
Im Z~v!GQ

Im2Z~v!1FReZ~v!1
d2

dtdv
Im Z~v!G2 , ~15!

whereZ(v)5R2 i (Lv21/Cv) is the complex impedance
In deriving Eq.~15! we assumed that the time variation

of the parameters in the resolvent take place at scales m
greater than the oscillation period, and the local equilibri
initial state~14! is achieved whenR is greater thandL/dt.
The second restriction can be relaxed by introducing the n
equilibrium initial correlator of the currentGJ

neq(0). In this
case the Eq.~15! takes the following form:

~J2!v5

2FReZ~v!1
d2

dtdv
Im Z~v!GQ̃

Im2Z~v!1FReZ~v!1
d2

dtdv
Im Z~v!G2 , ~16!

whereQ̃5LGJ
neq(0). Wewill see that the initial correlator is

not important when calculating the spectral line width a
the Q factor of the electrical oscillation circuit.

Using the Langevin equations~13! the expressions for the
spectral function of the current takes the form
01710
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~J2!v5
~Ě2!v

Im2Z~v!1FReZ~v!1
d2

dtdv
Im Z~v!G2 . ~17!

The comparison of Eqs.~15! and ~17! gives for the spectra
density of the emf

~Ě2!v52FReZ~v!1
d2

dtdv
Im Z~v!GQ̃

52FR2
dL

dt
1

1

v2C2

dC

dt G Q̃, ~18!

which is a generalized Nyquist formula. One can see tha
the general case the spectral density of the emf for s
processes depends on the frequency and is not always w
noise.

Now let us come back to a point discussed in the beg
ning, namely to the Q factor of the oscillating system. As t
time derivative can have different signs, the dispersion c
rections in Eq.~15! may both decrease or increase the lin
width and therefore also the oscillating system Q factor. T
independent variation of the reactive parametersL and C
gives rise a shift of the circuit proper frequency. To avo
this frequency shift we should change the reactive para
etersL andC as

dC

dt
52

C

L

dL

dt
, ~19!

which follows from the condition of the stability of the cir
cuit frequency:v05(LC)21/25const. In this case Eq.~15!
takes the form

~J2!v5

2Q̃FR2
dL

dt S 11
1

v2LC
D G

~Lv21/Cv!21FR2
dL

dt S 11
1

v2LC
D G 2 . ~20!

Near the resonance pointv5v0

~J2!v5
Q̃

L

g

~v2v0!21g2
1

Q̃

L

g

~v1v0!21g2
, ~21!

where the linewidth is given by

g5
1

2L S R22
dL

dt D . ~22!

We see from Eqs.~21! and ~22! that the correction is still
symmetric with respect to the change of sign ofv, but the
intensities and broadening are different from the station
case. In the case of local equilibrium, the integral of t
intensity over frequency remains the same as in the stat
ary case~Fig. 1!. FordL/dt52(L/C)(dC/dt)5)(1/5)R the
initial correlation differs from local equilibrium less tha
1%.
4-3
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The spectral line quality factor becomes now

Q5
v

2g
5S L

CD 1/2 1

R22
dL

dt

. ~23!

Note that the initial correlation is not present in the expr
sions for the linewidth~22! and the Q factor~22!, these ex-
pressions being fully determined by the singularities of
resolvent. Usually the Q factor increases as the inducta

FIG. 1. Spectral function of current fluctuations as a function
frequency. The solid and dashed lines correspond todL/dt
5dC/dt50 anddL/dt52(L/C)(dC/dt)5(1/5)R, respectively.
2

n,
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increases and the capacity decreases, but due to the no
tionary dispersion terms it can increase drastically. T
higher the initial Q factor of the system, the stronger t
effect. Thus for a circuit proper frequency of 1 kHz and a
factor51000, the second term in Eq.~22! is comparable to
the first one, when the reactive parametersL and C of the
system vary by several tenths per second. As we conside
linear approximation, to avoid misunderstanding we assu
thatR.2(dL/dt). Therefore, at finite time intervals one ca
increase drastically the Q factor by simultaneously incre
ing the inductance and decreasing the capacity. Similar s
ations can appear in other oscillating systems.

Using the momentum method and the time multisc
technique, we have generalized the Callen-Welton formul
systems with slowly varying parameters. The important c
clusion of this analysis is to reveal that the spectral funct
of the fluctuations is determined not only by the dissipat
but also by the derivatives of the dispersion. The non-Jo
dispersion contribution is characterized by a new nonlo
effect originating from an additional phase shift between
force and the response of the system. That phase shift re
from the parametric control to the system. Finally, an el
trical oscillation circuit is considered as a concrete examp
In that system it is shown that the dispersive contributio
strongly affect the Q factor. These results are applicable
other systems and are important for the understanding
various behaviors observed in different field of physics, co
munication, chemistry, and biophysics.
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