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Fluctuation-dissipation dispersion relation and quality factor for slow processes
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A generalization of the Callen-Welton formula for systems with slowly varying parameters is given. Using
the momentum method and the time multiscale technique, it is shown that not only the dissipation but also the
dispersive contributions determine the spectral function of the fluctuations in these systems. The general
formalism is illustrated for an oscillating electrical circuit, and the influence of the dispersion contributions on
the quality factor of the system is discussed.
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Any oscillating system is characterized by two main pa-tovich stated that the FDT always has system-specific forms.
rameters: the proper frequency and the quality fa@@fac- Indeed, in general case, the system parameters may depend
tor). The latter is directly linked with the sensitivity of the both on time and space. Inhomogeneities in space and time
system. The higher the Q factor, the more sensitive the sysn scales greater than the fluctuation scales will certainly
tem is. The Q factor is inversely proportional to the width of also contribute to fluctuations. Recently, in the context of
the spectral line of the parameter fluctuations. In thermodyplasma physics, and using the Langevin approach and the
namic equilibrium, the fluctuations are determined by thetime-space multiscale technique, it has been shown that the
system temperature® and the dissipation. The first amplitude and the width of the spectral lines of the electro-
fluctuation-dissipation relation between the diffusion coeffi-static field fluctuations and the electron form factor are de-
cient and the dissipative friction coefficient was derived in-termined not only by the imaginary part of the dielectric
dependently by Einstein and Smoluchowski in their theory ofsusceptibility but also by the derivatives of its real dau.
Brownian motion[1,2]. Later, this relation was established As a result of the inhomogeneity, these properties become
by Nyquist[3] for electric circuits and was experimentally asymmetric with respect to the inversion of the sign of the
confirmed by Johnsopt]. The Nyquist-Johnson relation was frequency. In the kinetic regime, the form factor is more
extended by Callen and Weltdb] to a general class of sensitive to space gradients than the spectral function of the
dissipative thermodynamic equilibrium systenfsee also electrostatic field fluctuations. This asymmetry of lines can
Ref. [6]). In the classical case the spectral function of thebe used as a diagnostic tool to measure local gradients in the

fluctuations has the following form: plasma.
20 In this Brief Report we generalize the fluctuation-
(x?),=—1Im a(w), ) dissipation theorem for slowly varying processes. Using the
w

momentum method and the time multiscale technique, a gen-

where a(w) is the response function, ard is the tempera- eralized Callen-Welton formula is derived. The width and the
ture in energy units. The linear response theory and th@.mp'ltUde of the Spectral lines of the fluctuations are deter-
fluctuation-dissipation theoreiDT) for arbitrary dynamic ~ Mined not only by the dissipation but also by the derivatives
systems was developed by Kupdl, Mori [8], and Zwanzig Of the dispersion. These two effects have a comparable in-
[9]. In the Kubo method the response of the density matrix tdluence for systems with a high Q factor. The non-Joule dis-
the external field is calculated, whereas the Mori-ZwanzigP€rsion contribution is characterized by a new non-local ef-
technique introduces a projection operator to the space dfct originating from an additional phase shift between the
variables that describe the macroscopic states of the systefi@rce and the response of the system. This phase shift results
This technique was further developed by Lj@®] with the  from the parametric control to the system. As an application
assumption that the space of variables, describing macrdve consider & C circuit. It is shown that the spectral func-
scopic states of the system is formed not only by the set ofion of the current depends not only on the real part of the
dynamic operators but also by their time derivatives to anympedance(dissipation but also on the derivatives of its
order. The slow processes and long time correlations in corimaginary part(dispersion. It is also shown that at finite
nection with ergodicity, anomalous diffusion, and Fick’s law time intervals one can drastically increase the Q factor by
has been studied in RefL1]. The most comprehensive re- simultaneous increasing the inductance and decreasing the
view of the state of the art concerning dynamical correlatiorcapacity.
has been presented in a recent publication by Balucani, Lee, L€t us consider an arbitrary system whose evolution is
and Tognett{12]. described by the following equation:

Klimontovich showed 13] that the standard FDT leads to
several difficulties if applied to concrete systems. Klimon-

d
EH;(U).(:;(H )=0, t>t', 2

whereL(t) is generally a non-self-conjugate, linear opera-
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motion. G(t,t’) may be the Heisenberg operator. Thenables. Thus in first approximation the expression for the
L(t)-G(t,t") will be the commutator with the Hamiltonian. spectral function of the fluctuations is

In other casesG(t,t’) could be a density matrix, and 2
L(t) would appear as the Liouville operator. Finally, for G(w)=2R6<l+i
G(t,t") we can take the two-time correlatoG(t,t") B

= (0t nm(t) 6f5 i, (1)) of the deviation from the referent  The spectral density of the fluctuations of the internal pa-
statef,,(t) of the density matrix in the energy representationrameters of the system in local equilibrium can be defined as
5fam(t) [15,16. In such a casé(t) takes into account the usual[16,18].

self-consistent field and collisions. The time dependence in _
L(t) manifests itself in the referent state and in the terms((SAaB)“’_e"g(w)@
containing the external force. The slow scale is much larger

than the characteristic fluctuation time. We can therefore in- =t
troduce a small parameter, which allows us to describe

fluctuations on the basis of a multiple time scale analysis. (10
Obviously, fluctuations vary on both “fast” and “slow” time where

scales. The solution of the linear equati®) can be ex-

aww)B(Z)@(O)- ©

2

ImaAB(w) + MRQQ’AB(LU)

coth i w/20),

g;eEs;e(dz)tr;rsough Green’s function or the propagék(irt’) aAB(w):iﬁ% énmnn{z)Amanm(fm_fn) (11)
G(t,t")=U(t,t")-G(0), (3)  is the response function for diagonal resolvEif].

In the classical limiti—0 the generalized Callen-Welton
where in the case of the kinetic fluctuations, the one-timgormula (10) takes the form

momentG(0) is given by 2 20
6A6B),=|Im + Rex —. (12
G(0)=(8F (') 8% m (1)) (0A0B),=| IMaps(w) + 55 (Reag(@) | <0 (12
/ / In deriving Egs.(10) and(12) we assumed the system to
falpt’) +fr(ut’) . o S
= Snn, Smm, 5 : (4)  bein a local equilibrium state, so that the characteristic time

for the variation of parameters exceeds the relaxation time of

If the operatolL does not depend on time, the dependencéhe distribution function. When expanding Green'’s function

on time of Green'’s function appears only through the interval” Eq_. (6) in terms OT the small parametgs there appears an
t—t’. However, when we consider an operat@y.t) slowly additional term at first order. It is important to note that the

varying in time, and when we take nonlocal effects into ac-maginary part of the response function is now replaced by

count, the time dependence df(t,t') is more subtle the_ real part. If the Q factor of the system is of the order of
[14,17. = 1 (it could be a broad-band system or a process near the zero

frequency, the real and imaginary parts of the response
U(t,t)=U(t—t", ut’). (5)  function are of the same order and the correction is negligi-
) ) bly small. But in the case of systems with a high Q factor, for
Here we want to stress that the nonlocal effects appeawrhich the real part of the response function is greater than
due to the slow time dependencg$’. At first order, the the imaginary part, the second small parameter appears to be
expansion of Eq(5) with respect tou leads to inversely proportional to the Q factor. An example of such
system with a high Q factor could be plasma fluctuations
near the Langmuir frequency when the Q factor is inversely
proportional to the small plasma paramdte4]. When this
small parameter is comparable with the second term in
Let us introduce the resolvent operatdiZRwhich can be  EQs.(10) and(12) may have an effect comparable to the first
defined formally as the Laplace transform of the propagatoterm. This will be shown in the following example. At the
U (7): second order in the expansion in the corrections appear
) only in the imaginary part of the response function, and they
can reasonably be neglected. It is therefore sufficient to re-
tain the first order corrections to solve the problem. The
same derivatives of the dispersion, as in H4$) and (12),
The Laplace transform of Eq§3) and (6) gives appear in the geometrical optics approximafidgé] and play
an important role in defining the adiabatic invariant in a dis-
- persive mediunj20].
ataw) R(2)-G(0). ®) As an example we consider the electrical oscillation cir-
cuit which can be used to model many oscillation processes
For sake of convenience we omit from that equation and in nature. We assume that all the circuit eleméngsistance
throughout this Brief Report, keeping in mind that the timeR, inductance., and capacityC) have the same temperature
derivatives are taken with respect to the slowly varying vari-®, which can change adiabatically. Therefore the system pa-

J
Q(t,t’)Z(l—uTa—m)g(T,Mt), T=t—t’. (6)

F:Q(z)=f:l=J(T)exinT)dT, z=w+i0 7)

&2

g*(z)=(1+i
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rametersR, L, andC will vary slowly in time. Moreover the (E?)

change of these parameters may also be mechanical, due to  (J?) = > 5. (17)
the action of external forces, by “hand.” It is this case that IM?Z(w)+| ReZ(w)+ ImZ(w)

we will consider when evaluating the Q factor of &€ dtde

circuit.

The thermal motion of the charged particles in the circuit! € comparison of Eq$15) and (17) gives for the spectral
give rise to electric oscillations which can be considered tgi€nsity of the emf
be equivalent to Brownian motion. The corresponding

. o . d? ~
Langevin equation is (E?),=2|ReZ(w)+ —ImZ(w)|®
dtdw
dq dJ q .
—=J, L(ut)—0+R(ut)d+ =E, (13 o dL 1 dCo
dt dt C(ut) =2|R dt+—w2(;2 T 0, (18)

whereq is the electric charge] is the current, an& is the  \ ich is a generalized Nyquist formula. One can see that in
Langevin source. It can be treated as the emf equivalent tg,, general case the spectral density of the emf for slow

the a_ctio_n of the_ thermal motion of the charged particles in).;cesses depends on the frequency and is not always white
the circuit. Coming back to the momentum method, we car}, ise

represent the two-time correlator of the electric current NO'W let us come back to a point discussed in the begin-

Gy(t,t") asGy(t,t")=U(t,t')G4(0), whereU(t,t’) is the  ning namely to the Q factor of the oscillating system. As the
propagator of the set of Eq&L3), and where the initial con-  ime derivative can have different signs, the dispersion cor-

dition G,(0) for the local equilibrium state is rections in Eq.(15) may both decrease or increase the line-
width and therefore also the oscillating system Q factor. The

(Lo LI*+q?/C ~O(ut’) independent variation of the reactive parameterand C
G,0)=—55 JJ XN~ 75 dqdJ= L(ut'y  gives rise a shift of the circuit proper frequency. To avoid

(14) this frequency shift we should change the reactive param-
etersL andC as

Applying the procedure above, we obtain the following ex- dc CdL

pression for the spectral function of the current in the circuit: TR (19
t t’
dz \. . - . .
(J%,=2Rq 1+i R(z) — which follows from the condition of the stability of the cir-
dtde L cuit frequency:wo=(LC) *?=const. In this case Eq15)
d2 takes the form
2 ReZ(w)+—dtdwlmZ(w) C) ) aL .
- AR 2, (19 26| R g | 1+ — =
[ w
IM“Z(w)+|ReZ(w)+ dtdwlm Z(w) (Jz)w: .. (20)
Lo—1/Cw)°+| R— di 1+ !
whereZ(w)=R—-i(Lw—1/Cw) is the complex impedance. (Lo © dt w?LC
In deriving Eq.(15) we assumed that the time variations
of the parameters in the resolvent take place at scales mudiear the resonance poiat= wg
greater than the oscillation period, and the local equilibrium _ _
initial state(14) is achieved wherR is greater thardL/dt. ) _G) 0% 0 v
The second restriction can be relaxed by introducing the non- (J )w_f .2 L o 2D
S T ne ) (0= o)+ (w0t wo)+y
equilibrium initial correlator of the currer@}°Y0). In this
case the Eq(15) takes the following form: where the linewidth is given by
2 il 0 2 R 2dL 22
, ReZ(w)-i-mh”ﬂ Z(w) ’}/—Z m . (22
(3%),= oL 2. (16
Im?Z(w)+| ReZ(w)+ ImZ(w) We see from Eqs(21) and (22) that the correction is still
dtde symmetric with respect to the change of signegf but the

_ intensities and broadening are different from the stationary
where® =LG]°Y0). Wewill see that the initial correlator is case. In the case of local equilibrium, the integral of the
not important when calculating the spectral line width andintensity over frequency remains the same as in the station-

the Q factor of the electrical oscillation circuit. ary casdgFig. 1). FordL/dt=—(L/C)(dC/dt)=)(1/5)R the
Using the Langevin equatiori&3) the expressions for the initial correlation differs from local equilibrium less than
spectral function of the current takes the form 1%.
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increases and the capacity decreases, but due to the nonsta-
tionary dispersion terms it can increase drastically. The
higher the initial Q factor of the system, the stronger the
effect. Thus for a circuit proper frequency of 1 kHz and a Q
factor=1000, the second term in E¢R2) is comparable to

the first one, when the reactive parameterand C of the
system vary by several tenths per second. As we consider the
linear approximation, to avoid misunderstanding we assume
thatR>2(dL/dt). Therefore, at finite time intervals one can
increase drastically the Q factor by simultaneously increas-
ing the inductance and decreasing the capacity. Similar situ-
ations can appear in other oscillating systems.

Using the momentum method and the time multiscale
technique, we have generalized the Callen-Welton formula to
systems with slowly varying parameters. The important con-
clusion of this analysis is to reveal that the spectral function
of the fluctuations is determined not only by the dissipation
but also by the derivatives of the dispersion. The non-Joule

FIG. 1. Spectral function of current fluctuations as a function ofd'SperS'on contribution is characterized by a new nonlocal

frequency. The solid and dashed lines corresponddtddt
=dC/dt=0 anddL/dt=—(L/C)(dC/dt)=(1/5)R, respectively.

The spectral line quality factor becomes now
1/2 1

R 2dL'
~Sdt

o _(L
Q_Z_y_ c (23)

Note that the initial correlation is not present in the expres-

sions for the linewidth22) and the Q factof22), these ex-

effect originating from an additional phase shift between the
force and the response of the system. That phase shift results
from the parametric control to the system. Finally, an elec-
trical oscillation circuit is considered as a concrete example.
In that system it is shown that the dispersive contributions
strongly affect the Q factor. These results are applicable to
other systems and are important for the understanding of
various behaviors observed in different field of physics, com-
munication, chemistry, and biophysics.
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